Bay of Biscay;SeaWiFS;Sediment;Chlorophyll;Ocean color
In biological modelling of the coastal phytoplankton dynamics, the light attenuation coefficient is often expressed as a function of the concentrations of chlorophyll and mineral suspended particulate matter (SPM). In order to estimate the relationship between these parameters over the continental shelf of the northern Bay of Biscay, a set of in situ data has been gathered for the period 1998-2003 when SeaWiFS imagery is available. These data comprise surface measurements of the concentrations of total SPM, chlorophyll, and irradiance profiles from which is derived the attenuation coefficient of the photosynthetically available radiation, K-PAR. The performance of the IFREMER look-up table used to retrieve the chlorophyll concentration from the SeaWiFS radiance is evaluated on this new set of data. The quality of the estimated chlorophyll concentration is assessed from a comparison of the variograms of the in situ and satellite-derived chlorophyll concentrations. Once the chlorophyll concentration is determined, the non living SPM, which is defined as the SPM not related to the dead or alive endogenous phytoplankton, is estimated from the radiance at 555 nm by inverting a semi-analytic model. This method provides realistic estimations of concentrations of chlorophyll and SPM over the continental shelf all over the year. Finally, a relationship, based on non living SPM and chlorophyll, is proposed to estimate K-PAR on the continental shelf of the Bay of Biscay. The same formula is applied to non living SPM and chlorophyll concentrations, observed in situ or derived from SeaWiFS radiance.